

Carl A. Miller NIST Computer Security Division August 14, 2018

NIST PQC Seminar (not for public distribution)

The Basics

- It's a public key encryption scheme and a key encapsulation scheme.
- It's a lattice-based scheme that exploits LWE (Learning with Errors) and LWR (Learning with Rounding).
- It has IND-CPA (chosen plaintext attack) and IND-CCA2 (adaptive chosen ciphertext attack) versions.

Simplified Protocols (Based on this submission and [Regev 2010])

Learning With Errors

Suppose that **s** is an unknown vector in \mathbb{Z}_q^n , and that we know several approximate linear relations (mod q):

$$\mathbf{a}_1 \cdot \mathbf{s} \approx b_1$$
$$\mathbf{a}_2 \cdot \mathbf{s} \approx b_2$$
$$\vdots$$
$$\mathbf{a}_m \cdot \mathbf{s} \approx b_m$$

Here, $\mathbf{a}_i \in \mathbb{Z}_q^n$ and $b_j \in \mathbb{Z}_q$. Can we determine \mathbf{s} ?

Learning With Errors

More precisely, suppose that we are given the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$ and we are given the values

$$b_1 := \mathbf{a}_1 \cdot \mathbf{s} + e_1$$

$$b_2 := \mathbf{a}_2 \cdot \mathbf{s} + e_2$$

$$\vdots$$

$$b_m := \mathbf{a}_m \cdot \mathbf{s} + e_m$$

where $e_1, \ldots, e_m \in \mathbb{Z}_q$ are chosen according to a discrete Gaussian distribution (with variance much smaller than q).

Learning With Errors

LWE is at least as hard as determining the length of the shortest vector in a lattice.

Encryption with LWE

Suppose Alice has access to a black box that generates LWE samples.

Private key: s

Message: M (one bit)

Encryption with LWE

Bob can approximately determine b, and therefore determine m. But, to everyone else the msg. looks random.

Private key: s

Message: M (one bit)

How does Alice generate LWE samples?

Alice adds & subtracts random equations from this system to get a new equation.

Public _____ key

$$\begin{array}{rcl}
b_1 & := & \mathbf{a}_1 \cdot \mathbf{s} + e_1 \\
b_2 & := & \mathbf{a}_2 \cdot \mathbf{s} + e_2 \\
b_3 & := & \mathbf{a}_3 \cdot \mathbf{s} + e_3 \\
b_4 & := & \mathbf{a}_4 \cdot \mathbf{s} + e_4 \\
b_5 & := & \mathbf{a}_5 \cdot \mathbf{s} + e_5 \\
b_6 & := & \mathbf{a}_6 \cdot \mathbf{s} + e_6 \\
& \vdots \\
b_m & := & \mathbf{a}_m \cdot \mathbf{s} + e_m
\end{array} \times (-1)$$

$$\begin{array}{l}
\times & 0 \\
\times & (-1) \\
\times & 0 \\
\times &$$

Encryption with LWE

The linear combination of equations from the public key gives Alice an equation she can use for the transmission.

Alternatively ...

The public key can consist of equations with different s's.

Public key

Alternatively ...

The public key can consist of equations with different s's.

Public key

$$\begin{array}{rcl} b_1 & := & \mathbf{a}_1 \cdot \mathbf{s}_1 + e_1 \\ b_2 & := & \mathbf{a}_2 \cdot \mathbf{s}_2 + e_2 \\ b_3 & := & \mathbf{a}_3 \cdot \mathbf{s}_3 + e_3 \\ b_4 & := & \mathbf{a}_4 \cdot \mathbf{s}_4 + e_4 \\ b_5 & := & \mathbf{a}_5 \cdot \mathbf{s}_5 + e_5 \\ b_6 & := & \mathbf{a}_6 \cdot \mathbf{s}_6 + e_6 \\ & \vdots \\ b_m & := & \mathbf{a}_m \cdot \mathbf{s}_m + e_m \\ \end{array} \right) \times (-1)$$

A Hypothetical Protocol

Bob computes a uniformly random matrix A, and sends AS + E.

A Hypothetical Protocol

Private key: S in $Z_a^{n \times m}$

Bob computes a uniformly random matrix A, and sends AS + E. Alice sends back her encryption of M. Bob computes $S^{\top}A^{\top}r \approx B^{\top}r$, and recovers M.

Message: M (one bit) Mask vector: r in {-1, 0, 1}^m

Main Protocols

Learning With Rounding (LWR)

Let $p \mid q$ and $\mathbf{s} \in \mathbb{Z}_q^n$. In LWR, we are given the vectors $\mathbf{a}_1, \ldots, \mathbf{a}_m \in \mathbb{Z}_q^n$ and we are given the values

$$b_{1} := \lfloor (p/q)\mathbf{a}_{1} \cdot \mathbf{s} \rceil \in \mathbb{Z}_{p}$$

$$b_{2} := \lfloor (p/q)\mathbf{a}_{2} \cdot \mathbf{s} \rceil \in \mathbb{Z}_{p}$$

$$\vdots$$

$$b_{m} := \lfloor (p/q)\mathbf{a}_{m} \cdot \mathbf{s} \rceil \in \mathbb{Z}_{p}$$

 $(\lfloor \cdot \rceil =$ "round off to the nearest integer.")

Lizard.CPA.KeyGen.

Operation:

- 1. Generate a random matrix $A \leftarrow \mathbb{Z}_{a}^{m \times n}$.
- 2. Set a secret matrix $S := (\mathbf{s}_0 \| \cdots \| \mathbf{s}_{\ell-1})$ by sampling each \mathbf{s}_i independently from the distribution $\mathcal{Z}O_n(\rho)$.

in {-1, 0, 1}

Vectors with entries

Discrete Gaussian

- 3. For $0 \leq i \leq m-1$ and $0 \leq j \leq \ell-1$, sample an integer $E_{ij} \leftarrow \mathcal{D}G_{\alpha q}$, and then set $E = (E_{ij}) \in \mathbb{Z}_q^{m \times \ell}$.
- 4. Compute $B := -AS + E \in \mathbb{Z}_q^{m \times \ell}$.
- 5. Output the public key $\mathsf{pk} := (A || B) \in \mathbb{Z}_q^{m \times (n+\ell)}$ and the private key $\mathsf{sk} := S \in \{-1, 0, 1\}^{n \times \ell}$.

Lizard.CPA.Enc.

Vectors with entries in {-1, 0, 1}

Operation:

- 1. Generate an *m* dimensional vector $\mathbf{r} \in B_{m,h_r}$ from the distribution $\mathcal{H}WT_m(h_r)$.
- 2. Compute $\mathbf{a} := \lfloor (p/q) \cdot A^t \mathbf{r} \rceil \in \mathbb{Z}_p^n$ and $\mathbf{b} := \lfloor (p/q) \cdot ((q/2) \cdot \mathbf{M} + B^t \mathbf{r}) \rceil \in \mathbb{Z}_p^\ell$.
- 3. Output the ciphertext $\mathbf{c} := (\mathbf{a}, \mathbf{b}) \in \mathbb{Z}_p^n \times \mathbb{Z}_p^\ell$.

Lizard.CPA.Dec.

Operation:

- 1. Parse the ciphertext $\mathbf{c} = (\mathbf{a}, \mathbf{b})$.
- 2. Compute $\mathbf{M} = \lfloor (2/p) \cdot (\mathbf{b} + S^t \mathbf{a}) \rceil \in \mathbb{Z}_2^{\ell}$.
- 3. Output the message \mathbf{M} .

Protocols in Polynomial Rings

The protocols RLizard.CPA.KeyGen RLizard.CPA.Enc RLizard.CPA.Dec

are similar, except that that the matrices are restricted to

$$\mathcal{R}_q := \mathbb{Z}_q[x] / \left(x^n + 1 \right)$$

(which is a subring of $\mathbb{Z}_q^{n imes n}$.)

IND-CCA2 Protocols

Lizard.CCA.Enc.

Operation:

A random bit string is used both to pad the message, and to choose **r**.

- 1. Generate a random vector $\boldsymbol{\delta} \leftarrow \{0,1\}^{\ell}$.
- 2. Set $\mathbf{c}_1 := \mathbf{M} \oplus G(\boldsymbol{\delta}) \in \mathbb{Z}_2^d$ and $\mathbf{c}_3 := H'(\boldsymbol{\delta})$.
- 3. Set $\mathbf{r} := H(\boldsymbol{\delta}) \in \{-1, 0, 1\}^m$.
- 4. Compute $\mathbf{a} := \lfloor (p/q) \cdot A^t \mathbf{r} \rceil \in \mathbb{Z}_p^n$ and $\mathbf{b} := \lfloor (p/q) \cdot ((q/2) \cdot \boldsymbol{\delta} + B^t \mathbf{r} \rceil) \in \mathbb{Z}_p^{\ell}$.
- 5. Output $c = (c_1, (a, b), c_3)$.

Possible parameters:

Analyses & Performance

Security Proofs

The authors prove that the original protocol is IND-CPA secure, under the assumption that both LWE and LWR distributions are indistinguishable from random.

Idea (?): Replacing the public key and the ciphertext with a random string makes only a negligible amount of difference, so an adversary can get only a negligible amount of information from both.

Key & Message Sizes

Operations	Parameter	Plaintext	Ciphertext	Public Key	Private Key
		(bytes)	(bytes)	(bytes)	(bytes)
Lizard.CCA	CCA_CATEGORY1_N536	32	1,648	1,622,016	137,216
	CCA_CATEGORY1_N663	32	983	1,882,112	169,728
	CCA_CATEGORY3_N816	48	2,496	2,457,600	313, 344
	CCA_CATEGORY3_N952	48	2,768	2,736,128	365, 568
	CCA_CATEGORY5_N1088	64	3,328	6,553,600	557,056
	CCA_CATEGORY5_N1300	64	3,752	3,710,976	665,600
RLizard.CCA	RING_CATEGORY1	32	2,208	4,096	257
	RING_CATEGORY3_N1024	48	4,272	4,096	513
	RING_CATEGORY3_N2048	48	8,496	8,192	369
	RING_CATEGORY5	64	8,512	8,192	513

 Table 4: Size of Lizard.CCA and RLizard.CCA

Performance

Operations	Devemeter	KeyGen	Enc	Dec
Operations	Farameter	(ms)	(ms)	(ms)
Lizard.CCA	CCA_CATEGORY1_N536	156.320	0.031	0.034
	CCA_CATEGORY1_N663	176.570	0.032	0.036
	CCA_CATEGORY3_N816	250.555	0.052	0.064
	CCA_CATEGORY3_N952	275.555	0.057	0.072
	CCA_CATEGORY5_N1088	663.879	0.062	0.086
	CCA_CATEGORY5_N1300	392.828	0.071	0.101
	RING_CATEGORY1	0.449	0.036	0.039
BLizard CCA	RING_CATEGORY3_N1024	0.513	0.057	0.075
nLizaru.CCA	RING_CATEGORY3_N2048	0.875	0.078	0.093
	RING_CATEGORY5	0.920	0.108	0.135

 Table 5: Performance of Lizard.CCA and RLizard.CCA

Hardware Implementation?

Architecture of Lizard.CPA The Fig. 1 shows the hardware architecture of Lizard.CPA.

Fig. 1: Data path of Lizard.CPA

Claimed Advantages

The protocol is efficient in cases where the message space is small (e.g., 32 bits)?

Because of the structure of the encryption, a receiver can "add" plaintexts without decrypting them (i.e., limited homomorphic encryption).

Carl A. Miller NIST Computer Security Division August 14, 2018

NIST PQC Seminar (not for public distribution)